

HTRF® Europium cryptate donor / Red acceptor readout Setup recommendations for Spark 10M Filter / Filter (FF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 665 nm for the specific signal emitted by the acceptor (XL665 or d2). The ratio of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF® module. Spark 10M readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Tecan i-ControlTM software. In particular, these parameters should be entered as defined in the table below.

Measurement 1

Excitation filter 320 (25) nm
Emission filter 620 (10) nm
Mirror Dichroic 510

Lag time 100μs
Integration time 400 μs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation filter 320 (25) nm
Emission filter 665 (8) nm
Mirror Dichroic 510

 $\begin{array}{lll} \text{Lag time} & 100 \mu \text{s} \\ \text{Integration time} & 400 \ \mu \text{s} \\ \text{Flashes} & 75 \end{array}$

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

HTRF® Terbium cryptate donor / Green acceptor readout Setup recommendations for Spark 10M Filter / Filter (FF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 520 nm for the specific signal emitted by the acceptor. The ratio of the two fluorescence intensities 520/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF® module. Spark 10M readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Tecan i-ControlTM software. In particular, these parameters should be entered as defined in the table below.

Measurement 1

Excitation filter 340 (35) nm
Emission filter 620 (10) nm
Mirror Dichroic 510

Lag time 100μs
Integration time 200 μs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation filter 340 (35) nm
Emission filter 520 (10) nm
Mirror Dichroic 510

Lag time 100μs
Integration time 200 μs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

HTRF® Terbium cryptate donor / Red acceptor readout Setup recommendations for Spark 10M Filter / Filter (FF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 665 nm for the specific signal emitted by the acceptor (XL665 or d2). The ratio of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF[®] module. Spark 10M readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Tecan i-Control[™] software. In particular, these parameters should be entered as defined in the table below.

Measurement 1

Excitation filter 340 (35) nm
Emission filter 620 (10) nm
Mirror Dichroic 510
Lag time 100 µs
Integration time 200 µs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation filter 340 (35) nm
Emission filter 665 (8) nm
Mirror Dichroic 510
Lag time 100µs

Integration time 200 µs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

HTRF® Europium cryptate donor / Red acceptor readout Setup recommendations for Spark 10M Monochromator/ Filter (MF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 665 nm for the specific signal emitted by the acceptor (XL665 or d2). The ratio of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF® module. Spark 10M readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Tecan i-ControlTM software. In particular, these parameters should be entered as defined in the table below.

Measurement 1

Excitation 320 (20) nm

Monochromator

Emission filter 620 (10) nm

Mirror Dichroic 510

Lag time 100µs

Integration time 400 µs

Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation 320 (25) nm

Monochromator

Emission filter 665 (8) nm

Mirror Dichroic 510

Lag time100μsIntegration time400 μs

Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

This reader configuration (MF) only allows high performance HTRF measurement when assays are run in WHITE plates.

HTRF® Terbium cryptate donor / Green acceptor readout Setup recommendations for Spark 10M Monochromator/ Filter (MF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 520nm for the specific signal emitted by the acceptor. The ratio of the two fluorescence intensities 520/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF® module. Spark 10M readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Tecan i-ControlTM software. In particular, these parameters should be entered as defined in the table below.

	nent	

Excitation 340 (35) nm monochromator

Emission filter 620 (10) nm

Mirror Dichroic 510

Lag time 100µs

Integration time 200 µs Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation 340 (35) nm

Monochromator

Emission filter 520 (10) nm Mirror Dichroic 510

Lag time100μsIntegration time200 μsFlashes75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

This reader configuration (MF) allows high performance HTRF measurement when assays are run in WHITE plates.

HTRF® Terbium cryptate donor / Red acceptor readout Setup recommendations for Spark 10M Monochromator/ Filter (MF) configuration

Two sequential measurements should be carried out: at 620 nm for the cryptate emission, and at 665 nm for the specific signal emitted by the acceptor (XL665 or d2). The ratio of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

The spark 10M must be equipped with the HTRF® module. Spark 10M readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Tecan i-ControlTM software. In particular, these parameters should be entered as defined in the table below.

Measurement 1

Excitation 340 (35) nm

monochromator

Emission filter 620 (10) nm

Mirror Dichroic 510

Lag time 100µs

Integration time 200 µs

Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

Measurement 2

Excitation

Monochromator

Emission filter

Mirror

340 (35) nm

665 (8) nm

Dichroic 510

Lag time 100μs
Integration time 200 μs
Flashes 75

Gain Optimal gain

Z Can be calculated on the well giving the highest signal

This reader configuration (MF) only allows high performance HTRF measurement when assays are run in WHITE plates.

