

HTRF[®] Europium cryptate donor / Red acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in Flash lamp

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio* of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Gen5[™] Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

Setup	
Top filter cube	EX 330 / LUM (block #11)
	EM 620 / 665 / LUM (block #41)
Light source	Xenon flash
Lamp energy	High
Delay	150 µs
Data time collection	500 μs
Measurement data point	50
Read height	plate format dependant
	8.5mm for 384 wells low volume
Read speed	Normal
Gain	Automatic gain adjustment
	Autoscale

This reader only allows high performance HTRF measurement when assays are run in WHITE plates.

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek The method is covered by the US patent 5,527,684 and its foreign equivalents.

HTRF[®] Terbium cryptate donor /Green acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in Flash lamp

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 520 nm acceptor emissions. The ratio* of the two fluorescence intensities 520/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Gen5[™] Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

Setup	
Top filter cube	EX 340 / LUM (block #12)
	EM 620 / 520 / LUM (block #49)
Light source	Xenon flash
Lamp energy	High
Delay	100 μs
Data time collection	300 µs
Measurement data point	20
Read height	plate format dependant
	8.5mm for 384 wells low volume
Read speed	Normal
Gain	Automatic gain adjustment
	Autoscale

This reader only allows high performance HTRF measurement when assays are run in WHITE plates.

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek. The method is covered by the US patent 5,527,684 and its foreign equivalents.

HTRF[®] Terbium cryptate donor / Red acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in Flash lamp

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio* of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Gen5™Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

Setup	
Top filter cube	EX 340 / LUM (block #12)
	EM 620 / 665 / LUM (block #41)
Light source	Xenon flash
Lamp energy	High
Delay	50 μs
Data time collection	500 μs
Measurement data point	50
Read height	plate format dependant
	8.5mm for 384 wells low volume
Read speed	Normal
Gain	Automatic gain adjustment
	Autoscale

This reader only allows high performance HTRF measurement when assays are run in WHITE plates.

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek. The method is covered by the US patent 5,527,684 and its foreign equivalents.

Read speed

Gain

cisbio

HTRF[®] Europium cryptate donor / Red acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in Laser

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio* of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Gen5[™] Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

Setup

Top filter cube	EX 330 / LUM (block #18)
	EM 620 / 665 / LUM (block #41)
Light source	Laser
Delay	100 μs
Data time collection	500 µs
Measurement data point	Black plate: 100 / White plate: 20
Read height	plate format dependant
	8.5mm for 384 wells low volume

Normal

Autoscale

Automatic gain adjustment

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek The method is covered by the US patent 5,527,684 and its foreign equivalents.

HTRF[®] Terbium cryptate donor /Green acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in Laser

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 520 nm acceptor emissions. The ratio* of the two fluorescence intensities 520/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF[®] readout by setting up the measurement conditions in the Gen5[™] Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

Setup		
Top filter cube	EX 340 / LUM (block #18)	
	EM 620 / 520 / LUM (block #49)	
Light source	Laser	
Delay	50 μs	
Data time collection	500 μs	
Measurement data point	Black & white plates: 20	
Read height	plate format dependant	
	8.5mm for 384 wells low volume	
Read speed	Normal	
Gain	Automatic gain adjustment	

Autoscale

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek. The method is covered by the US patent 5,527,684 and its foreign equivalents.

HTRF® Terbium cryptate donor / Red acceptor readout Setup recommendations for Synergy[™] NEO2 equipped in laser

Synergy NEO2 must be equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio* of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

Synergy NEO2 readers must be appropriately configured for HTRF® readout by setting up the measurement conditions in the Gen5™Reader Control and Data Analysis Software. In particular, these parameters should be entered as defined in the table below

etup
EX 340 / LUM (block #18)
EM 620 / 665 / LUM (block #41)
Laser
50 μs
500 μs
Black & white plates: 20
plate format dependant
8.5mm for 384 wells low volume
Normal
Automatic gain adjustment
Autoscale

^{*}The fluorescence ratio is a correction method developed by Cisbio Bioassays with an application limited to the use of HTRF® reagents and technology, and for which Cisbio Bioassays has granted a licence to BioTek. The method is covered by the US patent 5,527,684 and its foreign equivalents.